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Abstract

High-throughput, low-power Software Defined Radio(SDR)
solutions require multi-core SIMD DSP processors to meet
real-time performance requirements. Given the difficulty in
programming traditional DSPs, these new multi-core signal
processors provide even greater challenges for programmers
and compilers. In this paper, we describe SPEX, a program-
ming language which is aimed at narrowing the semantic
gap between the description of complex SDR systems and
their implementations. SPEX supports three different types
of programming semantics, allowing SDR solutions to be
developed with a divide-and-conquer approach. For DSP al-
gorithm kernels, SPEX is able to support DSP arithmetics
and first-class vector and matrix variables with sequential
language semantics. From wireless protocol channels, it is
able to support sequences of data-processing computations
with dataflow language semantics. And for protocol sys-
tems, it is able to support real-time deadlines and concurrent
executions with synchronous language semantics. The de-
sign choices are motivated by our experience implementing
W-CDMA protocol on a reprogrammable substrate. In the
paper, we also briefly explain SPEX’s compilation strate-
gies.

1 Introduction

There is a growing trend for using multi-core DSP processor
architectures to support high-throughput, low-power mobile
Software Defined Radio(SDR) solutions [5] [13] [12]. Un-
like traditional uniprocessor DSPs, these multi-core DSPs
have non-uniform memory access latencies, wide SIMD
units, narrow data width, and the requirement to support
dynamically changing workloads with real-time deadlines.
Traditional DSP programming models are designed for
stand-alone algorithms and uniprocessor architectures. Even
for uniprocessors, developers are often forced to program in
assembly language to achieve maximum performance. The

new multi-core signal processors provide even greater chal-
lenges for programmers and compilers. To make matters
worse, the software implementations of wireless protocols
require a large set of operations that are not natively sup-
ported in general purpose languages. These include fixed-
point DSP arithmetics, streaming and concurrent computa-
tions, and real-time process scheduling. Clearly, there is a
need for better programming models to bridge the widening
gap between high-level software developments and efficient
DSP hardware utilization.

In Section 2, we first describe the software implementa-
tion of the W-CDMA protocol, and its behaviors and re-
quirements. We then describe SPEX, a programming lan-
guage for SDR in Section 3. SPEX includes three differ-
ent types of programming semantics — Kernel SPEX, Stream
SPEX, and Synchronous SPEX. This allows SDR solutions
to be developed with a divide-and-conquer approach, where
each component can be implemented and verified indepen-
dently. Kernel SPEX is an imperative language supporting
native DSP arithmetics and first-class vector and matrix vari-
ables. It is best used to describe DSP algorithm kernels.
Stream SPEX is a dataflow language for streaming compu-
tations. It is best used to describe wireless protocol’s com-
munication channels. Synchronous SPEX is a concurrent
language with real-time support. It is best used to describe
the overall protocol’s system operations. And finally, in Sec-
tion 4, SPEX’s compilation strategies are described.

2 SDR Case Study: W-CDMA

In order to design a language suited for SDR, we need to
first examine the implementation requirements of wireless
protocols. In our study, we use W-CDMA as a case study
because it has many of the characteristics found in a typ-
ical SDR system, including complex DSP algorithms, real
time computational requirements, and dynamically chang-
ing workloads.
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Figure 1: W-CDMA Protocol Diagram

Protocol System. The top diagram in Figure 1 shows
the W-CDMA wireless protocol’s system execution pat-
terns. W-CDMA'’s data are divided up into periodic 10msec
frames. Some channels, such as the frontend ADC, FIR,
and Channel Estimation, are needed for every frame. Other
channels are executed based on the protocol operation con-
ditions. Some channels are periodically executed for every
frame, whereas others are aperiodic. Some channels have
hard real-time deadlines, whereas others have soft real-time
deadlines, or no real-time deadlines. For mobile terminals,
there may only be one channel active at a time, but base sta-
tions needs to support multiple users. This requires most of
the channels to be executed concurrently, with some chan-
nels having data dependencies. This level of SDR descrip-
tion can be modeled as a concurrent system with multiple
real-time deadlines.

Protocol Channels. The bottom diagram in Figure 1
shows the W-CDMA DCH channel. Data first travels
through multiple descramblers and despreaders. They are
then combined together with the combiner, sent to the dein-
terleaver, and then to the channel decoder. This level of SDR
description does not have the notion of real-time. Data is
processed in a pipelined sequence of DSP kernels. This level
of SDR description can be modeled as stream computation.

Protocol Algorithms. Each protocol channel is made up
of a number of DSP algorithms. Our previous study [11]
has examined the algorithm characteristics of W-CDMA,
and we found that the majority of the computations are done
on vector variables with 8- to 16-bit fixed point precisions.
Therefore, in SDR DSP algorithmes, it is important to support
fixed-point vector variables and operations.

3 SPEX Programming M odel

SPEX supports three different levels of programming se-
mantics: Synchronous SPEX, Stream SPEX, and Kernel
SPEX. An implementation of W-CDMA using SPEX is
shown in Figure 2. At the top level, the programmers use
Synchronous SPEX to model the wireless protocol as a syn-
chronous real-time system. Protocols channels are treated
as concurrent nodes with a set of execution patterns and
deadlines. Inter-channel data dependencies are described
with communication and synchronization primitives. Syn-
chronous SPEX nodes are allowed to execute only if both
of the input data dependencies and timing constraints have
been met. In the next level, each protocol channel is modeled
as a dataflow stream using the Stream SPEX. This level of
abstraction still allows concurrent execution, but has no no-
tion of real-time. Each channel is constructed as a sequence
of DSP kernels connected together with dataflow communi-
cation primitives. Each kernel is allowed to execute after its
input data dependencies are met. At the lowest level, Kernel
SPEX can be used to model DSP kernels. Each DSP algo-
rithm is described as an sequential kernel consisting of a set
of functions and local states.

Static Language. SPEX is a static object-oriented lan-
guage modeled after C++. Like C++, local variables and
member functions are supported as part of class declara-
tions. However, unlike C++, objects cannot be created dy-
namically. All variables and functions have to be statically
declared and allocated during compile time. This means that
C++ features, such as late-binding virtual functions, are not
supported. This is enforced to increase the efficiency of the
compiled code. Unlike general purpose computing, a SDR
platform has very high computation requirements and low
power budget, with little overhead to support dynamic task
scheduling and memory managements. Therefore, it is de-
sirable to offload these tasks to the compiler. SPEX is de-
signed to trade off the convenience of dynamism for compi-
lation efficiency.

3.1 DSP Data Types

DSP arithmetics have many intrinsic characteristics that are
not supported by traditional general purpose programming
languages, such as C++. For SPEX, we have introduced a
set of special DSP data types made for DSP computations.
These include a set of type modifiers on top of existing types,
and a set of first class array types for DSP computations.
DSP Attribute Modifiers. SPEX supports DSP vari-
ables with additional type attributes that are not supported by
general purpose languages. These are modeled after System
C variable attributes, which include: 1) fixed-point arith-
metics, 2) data precision, 3) overflow mode, and 4) round-
ing mode. Many embedded DSP processors do not sup-
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Figure 2: Implementation of W-CDMA using SPEX’s three different levels of programming abstraction

port 32-bit floating point, but simpler 8- or 16-bit fixed-point
arithmetic operations instead. Therefore, in addition to inte-
ger and floating-point numbers, SPEX supports fixed-point
numbers with user-defined data precisions. In C, the result of
overflowing fixed-point operations are implicitly wrapped-
around. In DSP computation, saturation is needed for some
operations. In fixed-point and floating point computations,
different rounding modes also need to be explicitly defined
in order to preserve the accuracy of the results.

Vectors and Matrices. SPEX supports first class arith-
metic operations on vector, matrix and complex numbers,
modeled after Matlab data operations. For example, pro-
grammers can use an add operator on two vectors, instead
of writing a loop to iterate through each vector element.
SPEX also supports predication and permutation operations
on vector and matrix variables, which allows programmers
to express algorithms more efficiently.

3.2 Communication Primitives

Wireless protocols are concurrent real-time embedded sys-
tems that can be modeled as a set of concurrent nodes con-
nected together with communication primitives. In SPEX,
the communication primitives are implicitly defined as the
function arguments passed between functions. In order to
distinguish between concurrent and imperative code, SPEX
provides a set of communication primitives as a method for
the programmers to explicitly define concurrency.
Channels — Message Passing Objects.  SPEX chan-
nels are objects build on top of the traditional message pass-
ing concepts. Like the message passing protocols, channels
stall on reading from an empty channels and writing to a full
channel. Each channel is required to have only one writer,
but can have potentially many readers. However, unlike
message passing protocols, channels are not strictly FIFO
buffers, and the exact size of data transmission packets and
communication patterns can be determined by the compiler.
Channels support streaming computations through im-
plicit communication. Between functions, the sender and the
receiver of a channel do not have to enforce strict sequential
execution order. A channel consists of an array of commu-

tenpl ate<cl ass T, TAPS, S>
class FIR {

private:

vect or <T, TAPS> coeff;

public:
ker nel

{
vector <T, TAPS> v;

run(channel <T, S+TAPS- 1> in, channel <T, S> &out)

for (i =0; i <S; i++) {
v = in(i,i+TAPS-1);
out[i] = sum(v * coeff);

}
}
}

Figure 3: Kernel SPEX example — FIR filter

nicating elements. As long as the element-wise data consis-
tency is maintained, any execution order between the 2 func-
tions are allowed. Within a function, channels can be used
in the same way as vectors with one restriction — all channel
variables are either read-only or write-only, not both. This
relaxed form of guarantee allows the compiler to optimize
the data communications between functions, as streams can
be established between the caller and callee functions run-
ning concurrently on two different processors.

Signals — Shared Memory Objects. SPEX signals are
objects built on top of the shared memory concepts with
some restrictions. Like shared memory variables, a signal
can change its value at any time during execution. To pro-
vide efficient compilation, signals are restricted to have only
one writer, but can have potentially many readers. Because
many embedded multi-core processors do not have cache
structures or support cache coherent protocols, supporting
software managed shared memory variables is not very effi-
cient. Signals should only be used for control-related code
and synchronization mechanisms. Therefore, SPEX restricts
the declarations of signals to be scalar variables only.

3.3 SPEX Objects

SPEX is an object-oriented language based on C++ seman-
tics. The three different levels of programming abstractions
are expressed as three different types of class function dec-
larations. Three additional keywords: kernel, stream, and



01 tenpl ate<spex_type T, S>
02 class DCH

03 {

04 private:

05 ce

07 Rake<T, S> rake[ max_r ake_fi ngers];
08 Viterbi <256,S> viterbi;
09 Conbi ner <T, S> conbi ner;

11 channel <T, S> chl[ max_r ake_fi ngers];
12 channel <T, S> ch2;

14 public:

17  streamrun(channel <T, S> ADC i n,

18 channel <T, S> searcher _in,
19 channel <T, S> & out _MAC,
20 si gnal <i nt > & done)

22 for (int i =0; i
23 rake. run(ADC_i n,
24 conbi ner.run(chil,
25 viterbi.run(ch2,

< numrake_fingers; i++)
searcher_in, chl[i]);

ch2);

out _MAC) ;

27 barrier;
28 done = true;

Figure 4: Stream SPEX example - DCH

synchronous are added to distinguish the three types of
functions. The following describe these three types of se-
mantics.

Kernel SPEX. Kernel SPEX functions assume a sequen-
tial execution order, following the semantics of C. They are
declared with the kernel keyword, as shown in Figure 3.
Formally, for each instruction i inside a kernel function, the
results of instruction i can only be updated after all of its
preceding instructions have finished their update, and must
be updated before all of its succeeding instructions start their
updates. Because of this, channels and signals can be used
within a kernel function, but they cannot be declared as lo-
cal variables, or passed as an argument to other functions.
In addition, kernel functions are only allowed to call other
functions that are also kernel functions.

The strict sequential ordering means that the kernel func-
tions are best fitted for SIMD and VLIW compilations. We
envision kernel functions being used to describe individual
DSP algorithms. This provides a clean interface between
the system engineers that design the protocol channels us-
ing Stream and Synchronous SPEX, and the DSP algorithm
engineers that design the algorithms with Kernel SPEX.

Stream SPEX. Stream SPEX functions are used to sup-
port concurrent data streaming with a dataflow computation
model. Functions are declared with the stream keyword.
With the streaming semantics, the strict sequential execution
order is not enforced between instructions, only data consis-
tency is required. A pair of communicating instructions can
execute in any order, as long as the correct data values are
consumed by the receiving function. Stream functions are
not allowed to declare signals as local variables, nor pass

01 cl ass WCDVA

04  AdcFir<int16, wcdnma_frame> adcfir;
05 DCH<i nt 16, wcdna_frane> dch;
06 Cl ock<sl ot, 15> frame_cl ock;

07 Si gnal <bool > bch_done, dch_done;
08

09 S

10 synchronous run()

11 {

12 when (clock == 0) {

13 adcfir(chl);

14 bch(chl, bch_done);

15 chan_est (chl, ch2, num fingers);
16 if (wcdna_dat a_node)

17 dch(chl, ch2, num fingers, dch_done);
18 }

19

20 when (clock == bch_deadl i ne)

21 assert (bch_done == true);

22

23 when (cl ock == dch_deadl i ne)

24 assert (dch_done == true);

25

26 }

Figure 5: Synchronous SPEX example - W-CDMA

them as arguments in function calls.

Figure 4 shows a simplified implementation of a W-
CDMA DCH channel. In the function run, the instructions
between line 22 and 25 represent a data stream going from
the rake receiver to the combiner to the viterbi decoder. Each
algorithm can potentially execute on a different processor
with the data streamed between them. The barrier keyword
on line 27 is used in a streaming function to enforce a se-
quential execution order between instructions. For example,
in function run, the statement done = true on line 28 is de-
fined after the barrier instruction. If it is defined before the
barrier, then the value of done may be set to true before the
end of the streaming execution. This is because operations
in a stream function are not guaranteed to start after its pre-
decessor completes. Therefore, line 28 may start execution
before the viterb: function call on line 26 has finished its
computation. If there is no barrier defined, then we assume
that the entire function is under one streaming scope.

Synchronous SPEX. Synchronous SPEX is used to sup-
port discrete real-time computations, with functions de-
clared with synchronous keyword. It is modeled after Syn-
chronous Languages, such as Esterel [3] and Signal [6]. A
partial implementation of the W-CDMA real-time system
is implemented as shown in Figure 5. Synchronous func-
tions are allowed to declare and call stream and kernel func-
tions, and channel and signal communication primitives. In
this programming abstraction level, instructions are treated
as concurrent nodes that can execute in parallel. In the W-
CDMA example, the three when scopes on line 12, 20, and
23 can be executed concurrently. In addition, the body of
the scope on line 12 can also be executed concurrently. The
expressions on line 12, 20, and 23 stall until the conditions
evaluate to true.
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Synchronous SPEX also provides support for periodic
clock variables. In this example, a clock that tracks W-
CDMA frames is declared on line 6, and used on line 12,
20, 23. Clock variables are declared with two parameters:
time step and clock period. Time step is the smallest time
increment for the clock variable, and it has to be a multiple
of the clock period of the processor. In this example, it is
declared to be the length of one W-CDMA slot. Clock vari-
able’s internal time counter is set back to zero at every clock
period. In this example, the clock period is set to the length
of one W-CDMA frame, which contains 15 slots. The main
purpose of the clock is to provide synchronous execution,
and to describe deadlines.

4 SPEX Compilation

SPEX’s three different programming semantics require three
different compilation techniques. Kernel SPEX functions
can generally be compiled onto a single DSP processor,
which requires VLIW and SIMD compilation techniques.
Stream SPEX functions should be mapped across multiple
processors for concurrent stream executions, which requires
dataflow compilation with multi-processor assignments and
DMA scheduling. Synchronous SPEX functions have tim-
ing constraints, requiring real-time scheduling algorithms.
Ideally, we should compile these three different types of
function independently. However, in wireless protocols,
these three types of functions are inter-connected together
through channels, signals and other types of variables. Fur-
thermore, the compilation efficiencies for these types of
functions are inter-dependent on each other. For example,
the quality of the stream scheduling may depend on the pre-
dictability of its kernel functions’ execution times. However,
the optimal scheduling of a sequential DSP kernel may de-
pend on the inter-processor network traffic, which is deter-
mined by the stream compilation. To solve this problem, we
propose an iterative multi-tier compilation process. We first

compile the kernel functions, and profile their execution be-
haviors. We then pass these profile information to compile
stream functions, treating each kernel function as an atomic
instruction. The stream function’s execution behaviors are
then extracted to compile the synchronous functions. If all
of the timing conditions are met, then we are done. Other-
wise, we take this more realistic system assumptions, and
recompile the kernel functions to reiterate the compilation
process. This iterative process halts when the system dead-
lines and met, or if the compiler cannot converge onto a fea-
sible solution. SPEX’s multi-tier compilation is shown in
Figure 6. The following sections describe the compilation
process for each of the three types of functions.

Kernel SPEX Compilation. The process of kernel com-
pilation aims to map the algorithms onto a specific DSP plat-
form efficiently. The kernel SPEX representation is passed
through the compiler that has a specification of the pertinent
characteristics of the DSP. These include SIMD width, arith-
metic and logical operations, and vector permutation primi-
tives. The more esoteric data types such as complex should
be expressed in the simpler constructs of the architecture.
Vector permutation operations are broken into a series of as-
sembly operations that perform the equivalent task. Vectors
specified at the SPEX level that are larger than the native
SIMD width must also be broken up into appropriately sized
chunks.

Stream SPEX Compilation. For stream compilation, the
problem can be broken down into three steps. In the first
step, each channel is analyzed to determine its usage pat-
tern and its streaming rate. In the second step, functions
that are connected together through channels are match in
the streaming rate. In the third step, functions are par-
titioned onto multiple processors based on the workloads,
memory are allocated, and DMA instructions generated, us-
ing a dataflow compilation algorithm.

Synchronous SPEX Compilation. For synchronous
compilation, the problem involves real-time scheduling.
According to previous work [9], multiprocessor real-time
scheduling can be broken into three steps: 1) processor as-
signments, 2) task ordering, and 3) execution timing. All
three steps can be done either during compile time or during
run time. For SDR, we find that processor assignments and
partial task ordering can be done during the compile time.
But execution timing can not be determined during compile
time. This is because W-CDMA protocols can execute dif-
ferent types of channels with different execution conditions.
Idle mode and data transferring mode use different protocol
channels. Because the channels have data-dependencies, a
relative order can be determined during the compile-time.



5 Related Work

There have been many research studies on efficient DSP
languages and programming models. Many of them have
focused on a single programming semantic. DSP-C [1]
extends the C language to include types with different
bitwidths, support for saturation mode, and circular buffers.
While these are useful extensions for DSP programming,
DSP-C is missing the SIMD-centric data structures as well
as concurrency support, which are essential for high-through
multi-core DSP architectures.

The Kahn process network [7] is a model of computation
that has been popular in the DSP community. In Kahn’s
model, network nodes communicate concurrently with each
other through unidirectional infinite-capacity FIFO queues.
Each network node contains its own internal state. Read-
ing from FIFO queues is blocking, and writing to the FIFO
queues is non-blocking. Because of the blocking-read oper-
ation, the context switching overhead is high. Researchers
have later proposed dataflow process networks [10], which
is a special case of a Kahn network. In dataflow process
network, the communication between network nodes (called
actors) are explicitly defined as firing rules. Many variations
of dataflow processor networks have been proposed, includ-
ing quasi-static dataflow [14], and dynamic dataflow [4]. We
think a variation of these dataflow models can be used for
Stream SPEX.

Stream-C [8] is a C-extensions developed as part of the
Imagine project [2]. It expresses DSP concurrency through
streams, very similar to SPEX’s stream objects. However,
it is designed for uniprocessor architecture with no explicit
real-time constraints. In addition, explicit SIMD object defi-
nitions and data attribute information are also not supported.
Streamlt [15] was a dataflow language developed for the
RAW project. Like Stream-C, it lacks explicit SIMD object
definitions or data attribute information, making it unsuit-
able for multi-core SIMD or VLIW DSP architectures. In
addition, it is also very hard to express real-time constraints
in dataflow. There are also other non-C based approaches;
SPL [16] is a good example. Although SPL contains SIMD-
centric vector and matrix data structures, it does not expose
any concurrency information. In addition, it generates code
for C or Fortran, which does not ease the compilation efforts.

6 Conclusion

We have presented a programming language designed for
embedded multi-core DSP system for SDR. SPEX allows
programmers to efficiently express DSP algorithms as well
as concurrent real-time systems. SPEX support these vastly
different programming requirements by offering three differ-
ent levels of programming semantics — kernel, stream and

synchronous functions. Each one is design for a specific re-
quirement of the software descriptions of wireless protocols.
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